
FINTEH.ORG | AUDIT

DIFFERENCE AUDIT REPORT 2204041
CWD.GLOBAL BLOCKCHAIN CODE

CUSTOM bb63cb902eda3065200e4ca07da2da679c729719

BASE 5bad558ee1b9a5d3e401e9149a1482f400709b82

Abstract 3

Disclaimer 3

Project overview 3

Procedure 4

Building the software 5
Introduction 5
Conclusions 6

On-chain protocol (graphene/chain/protocol) 6
New operations 6
Changes to chain parameters 8

Business logic (graphene/chain) 12
Configuration 12
Use of enums 12
Modifications to graphene:app (in libraries/app) 13
Modifications to the wallet in libraries/wallet 14
Modifications to plugins in libraries/plugins 14
Modifications to the programs in programs/ 15
Additional unit tests in tests/ 15
gr_interval 15

Operations 15
Proof of Crowd Staking 15
Gamezone 17
Flipcoin 17
Lottery 18
Matrix 19

Conclusion of the expert council 21

2

Abstract

This audit of CWD.global changes is with respect to the open source fork based on the

original BitShares 2.0 code.

Audit conducted by experts from the Fintech experts pool of the non-governmental

organization FinTechAssociation (finteh.org) and partners of the NGO FintechAssociation,

who are actively working in the Graphene space.

Disclaimer

This audit is the official audit report of the non-governmental organization

FinTechAssociation (finteh.org) and has an overall liability waiver.

Due to the peculiarities of creating a fork of BitShares 2.0, the “git diff" method will not

work, which significantly complicates the audit process. The commit history may be

incorrectly copied and overwritten, including submodules.

The report makes no warranties regarding the security of the code. One audit is not

enough. Several independent audits and a public bug bounty program to ensure the code

base is secure, recommended for all public projects.

Also, an audit report is not investment advice, totally.

Project overview

Two publicly available GitHub repositories were provided for the audit:

Custom source

github.com/crowdwiz-biz/crowdwiz-core/commit/bb63cb902eda3065200e4ca07d

a2da679c729719

3

Base Source

github.com/bitshares/bitshares-core/commit/5bad558ee1b9a5d3e401e9149a14

82f400709b82

In additional, technical specifications and business documentation

github.com/finteh/crowdwiz-core/blob/master/docs/cwd_tech_review_ENG.pdf

github.com/finteh/crowdwiz-core/blob/master/docs/cwd_advantages_review_ENG.pdf

Procedure

The 2.0.20190319 tag release of bitshares-core was compared and reviewed code

changes against.

Tasks:

1. Audit changes:

a. description on what blockchain operations something different happens.

b. robustness and safety (potential bugs, attack angles, etc.), and anything

unusual or against the best practices of blockchain backend code.

2. Audit of compliance with statements in public documents – technical specifications

and business documentation, include business logic and gamezone related stuff:

flipcoin, lottery, matrix.

Steps:

1. Setting up a local repository

2. Building the software (requires some older dependencies)

3. Preliminary review of code base

4. Review graphene protocol

4

5. Analysis

6. Starting to sync with the existing chain

7. Cleaning up preliminary findings and add recommendations

The next components was analyzed the basic structure of the changes in blockchain code

and review the following components:

1. The on-chain protocol: libraries/chain/protocol/ and

libraries/chain/include/graphene/chain/protocol/

2. The blockchain database and business logic in libraries/chain/ (without

protocol)

3. Modifications to graphene:app (in libraries/app)

4. Modifications to the wallet in libraries/wallet

5. Modifications to plugins in libraries/plugins

6. Modifications to the programs in programs/

7. Additional unit tests in tests/

Building the software

Introduction

The codebase requires:

● gcc-10

● boost 1.66

● openssl-1.0

cmake:

CC=gcc-10 CXX=g++-10 cmake -DBOOST_ROOT=/home/dev/opt/boost_1_66_0
-DCMAKE_BUILD_TYPE=Release -DBoost_NO_BOOST_CMAKE=ON
-DOPENSSL_ROOT_DIR=/usr/lib/openssl-1.0/
-DOPENSSL_CRYPTO_LIBRARY=/usr/lib/openssl-1.0/libcrypto.so
-DOPENSSL_INCLUDE_DIR=/usr/include/openssl-1.0 ../crowdwiz-core

5

Conclusions

The software builds and starts sync starts synchronizing with an existing blockchain through

the hard coded seed node synchronizing with an existing blockchain through the hard

coded seed nodes:

● 157.230.169.44:1776

● 185.193.125.52:1776

● 185.193.125.52:1776

● 185.193.125.52:1776

● 185.193.125.52:1776

● 68.183.242.188:1776

The random number generators used as well performance due to nested modifiers and

multiple levels or referral program can have a concern

finteh.org recommended

SSL version hardcoded by version 1.1.0 was deprecated on 10 September 2019. Very strong

recommendation to update it to actual version 1.1.1 or 3.0 accessible from 7 September

2021.

On-chain protocol (graphene/chain/protocol)

New operations

Operations 49 to 125 are new to the codebase:

/* 49 */ account_status_upgrade_operation,
/* 50 */ flipcoin_bet_operation, //GAMEZONE
/* 51 */ flipcoin_call_operation, //GAMEZONE
/* 52 */ flipcoin_win_operation, //VOP
/* 53 */ flipcoin_cancel_operation, //VOP
/* 54 */ flipcoin_loose_operation, //VOP
/* 55 */ lottery_goods_create_lot_operation, // GAMEZONE
/* 56 */ lottery_goods_buy_ticket_operation, // GAMEZONE

6

/* 57 */ lottery_goods_send_contacts_operation, // GAMEZONE
/* 58 */ lottery_goods_confirm_delivery_operation, // GAMEZONE
/* 59 */ lottery_goods_win_operation, // GAMEZONE, VIRTUAL
/* 60 */ lottery_goods_loose_operation, // GAMEZONE, VIRTUAL
/* 61 */ send_message_operation,
/* 62 */ matrix_open_room_operation,
/* 63 */ matrix_room_closed_operation, // GAMEZONE, VIRTUAL
/* 64 */ matrix_cell_filled_operation, // GAMEZONE, VIRTUAL
/* 65 */ create_p2p_adv_operation, // EXCHANGE
/* 66 */ edit_p2p_adv_operation, // EXCHANGE
/* 67 */ clear_p2p_adv_black_list_operation, // EXCHANGE
/* 68 */ remove_from_p2p_adv_black_list_operation, // EXCHANGE
/* 69 */ create_p2p_order_operation, // EXCHANGE
/* 70 */ cancel_p2p_order_operation, // EXCHANGE
/* 71 */ autocancel_p2p_order_operation, // EXCHANGE, VIRTUAL
/* 72 */ autorefund_p2p_order_operation, // EXCHANGE, VIRTUAL
/* 73 */ call_p2p_order_operation, // EXCHANGE
/* 74 */ payment_p2p_order_operation, // EXCHANGE
/* 75 */ release_p2p_order_operation, // EXCHANGE
/* 76 */ open_p2p_dispute_operation, // EXCHANGE
/* 77 */ reply_p2p_dispute_operation, // EXCHANGE
/* 78 */ resolve_p2p_dispute_operation, // EXCHANGE
/* 79 */ lottery_goods_refund_operation, // GAMEZONE, VIRTUAL
/* 80 */ credit_system_get_operation, //FINANCIAL
/* 81 */ credit_total_repay_operation, //FINANCIAL, VIRTUAL
/* 82 */ credit_repay_operation, //FINANCIAL
/* 83 */ credit_offer_create_operation, //FINANCIAL
/* 84 */ credit_offer_cancel_operation, //FINANCIAL
/* 85 */ credit_offer_fill_operation, //FINANCIAL
/* 86 */ pledge_offer_give_create_operation, //FINANCIAL
/* 87 */ pledge_offer_take_create_operation, //FINANCIAL
/* 88 */ pledge_offer_cancel_operation, //FINANCIAL
/* 89 */ pledge_offer_fill_operation, //FINANCIAL
/* 90 */ pledge_offer_repay_operation, //FINANCIAL
/* 91 */ pledge_offer_auto_repay_operation, //FINANCIAL, VIRTUAL
/* 92 */ committee_member_update_gamezone_parameters_operation,
/* 93 */ committee_member_update_staking_parameters_operation,
/* 94 */ poc_vote_operation, //PoC
/* 95 */ poc_stak_operation, //PoC
/* 96 */ poc_staking_referal_operation, //PoC, VIRTUAL
/* 97 */ exchange_silver_operation,//PoC
/* 98 */ buy_gcwd_operation,
/* 99 */ approved_transfer_create_operation,
/* 100 */ approved_transfer_approve_operation,
/* 101 */ approved_transfer_cancel_operation,
/* 102 */ approved_transfer_open_dispute_operation,
/* 103 */ approved_transfer_resolve_dispute_operation,
/* 104 */ mass_payment_operation,

7

/* 105 */ mass_payment_pay_operation,
/* 106 */ change_referrer_operation,
/* 107 */ gr_team_create_operation,
/* 108 */ gr_team_delete_operation,
/* 109 */ gr_invite_send_operation,
/* 110 */ gr_invite_accept_operation,
/* 111 */ gr_player_remove_operation,
/* 112 */ gr_team_leave_operation,
/* 113 */ gr_vote_operation,
/* 114 */ gr_assign_rank_operation,
/* 115 */ gr_pay_rank_reward_operation,
/* 116 */ gr_pay_top_reward_operation,
/* 117 */ gr_apostolos_operation,
/* 118 */ gr_range_bet_operation,
/* 119 */ gr_team_bet_operation,
/* 120 */ gr_range_bet_win_operation,
/* 121 */ gr_range_bet_loose_operation,
/* 122 */ gr_team_bet_win_operation,
/* 123 */ gr_team_bet_loose_operation,
/* 124 */ gr_range_bet_cancel_operation,
/* 125 */ gr_team_bet_cancel_operation

The actual business logic behind those operations is implemented in graphene::chain

and will be reviewed at a later point in time.

Changes to chain parameters

The chain parameters define many parameters in a way that they can be changed by the

committee-account later on. These parameters include block_time and fees.

Two changes stuck out:

● committee_proposal_review_period, and

● maximum_proposal_lifetime

where fixed values have been added instead of using the recommended

GRAPHENE_DEFAULT_* macros.

finteh.org recommended

Add back GRAPHENE_DEFAULT_* macros in

libraries/chain/include/graphene/chain/config.hpp instead

8

Additional parameters have been added:

uint16_t ref_01_percent_of_fee = (20*GRAPHENE_1_PERCENT);
///< percent of transaction fees paid to ref_01
uint16_t ref_02_percent_of_fee = (10*GRAPHENE_1_PERCENT);
///< percent of transaction fees paid to ref_02
uint16_t ref_03_percent_of_fee = (6*GRAPHENE_1_PERCENT);
///< percent of transaction fees paid to r ef_03
uint16_t ref_04_percent_of_fee = (4*GRAPHENE_1_PERCENT);
///< percent of transaction fees paid to r ef_04
uint16_t ref_05_percent_of_fee = (3*GRAPHENE_1_PERCENT);
///< percent of transaction fees paid to r ef_05
uint16_t ref_06_percent_of_fee = (2*GRAPHENE_1_PERCENT);
///< percent of transaction fees paid to r ef_06
uint16_t ref_07_percent_of_fee = (2*GRAPHENE_1_PERCENT);
///< percent of transaction fees paid to r ef_07
uint16_t ref_08_percent_of_fee = (3*GRAPHENE_1_PERCENT);
///< percent of transaction fees paid to r ef_08
uint8_t status_levels_00 = 0;
uint8_t status_levels_01 = 3;
uint8_t status_levels_02 = 5;
uint8_t status_levels_03 = 7;
uint8_t status_levels_04 = 8;
bool denominator = true;
uint16_t status_denominator_00 = (0*GRAPHENE_1_PERCENT);
uint16_t status_denominator_01 = (70*GRAPHENE_1_PERCENT);
uint16_t status_denominator_02 = (80*GRAPHENE_1_PERCENT);
uint16_t status_denominator_03 = (90*GRAPHENE_1_PERCENT);
uint16_t status_denominator_04 = (100*GRAPHENE_1_PERCENT);
uint8_t denominator_bonus_level = 4;
uint8_t nv_levels = 30;
uint8_t min_nv_status = 3;
uint8_t ref_levels = 8;
uint8_t compression_levels = 30;
bool compression = true; /// Referral reward program
have compression
bool cashback = true; /// Cashback - first level reward paid to
self
bool allow_non_partner_register = true; ///
uint8_t min_not_compressed = 3;
share_type compression_limit =
(GRAPHENE_BLOCKCHAIN_PRECISION * int64_t(0));
uint64_t referral_statistic_seconds = 90*24*60*60;
account_id_type root_account = account_id_type(27);
share_type nv_level_threshold_01 =
(GRAPHENE_BLOCKCHAIN_PRECISION * int64_t(15000));
share_type nv_level_threshold_02 =

9

(GRAPHENE_BLOCKCHAIN_PRECISION * int64_t(35000));
share_type nv_level_threshold_03 =
(GRAPHENE_BLOCKCHAIN_PRECISION * int64_t(100000));
share_type nv_level_threshold_04 =
(GRAPHENE_BLOCKCHAIN_PRECISION * int64_t(250000));
share_type nv_level_threshold_05 =
(GRAPHENE_BLOCKCHAIN_PRECISION * int64_t(450000));
share_type nv_level_threshold_06 =
(GRAPHENE_BLOCKCHAIN_PRECISION * int64_t(700000));
share_type nv_level_threshold_07 =
(GRAPHENE_BLOCKCHAIN_PRECISION * int64_t(1500000));
share_type nv_level_threshold_08 =
(GRAPHENE_BLOCKCHAIN_PRECISION * int64_t(3000000));
share_type status_threshold_01 =
(GRAPHENE_BLOCKCHAIN_PRECISION * int64_t(3000));
share_type status_threshold_02 =
(GRAPHENE_BLOCKCHAIN_PRECISION * int64_t(2000));
share_type status_threshold_03 =
(GRAPHENE_BLOCKCHAIN_PRECISION * int64_t(1000));
share_type status_threshold_04 =
(GRAPHENE_BLOCKCHAIN_PRECISION * int64_t(0));
uint16_t nv_level_reward_01 = (1*GRAPHENE_1_PERCENT);
uint16_t nv_level_reward_02 = (2*GRAPHENE_1_PERCENT);
uint16_t nv_level_reward_03 = (3*GRAPHENE_1_PERCENT);
uint16_t nv_level_reward_04 = (4*GRAPHENE_1_PERCENT);
uint16_t nv_level_reward_05 = (5*GRAPHENE_1_PERCENT);
uint16_t nv_level_reward_06 = (6*GRAPHENE_1_PERCENT);
uint16_t nv_level_reward_07 = (7*GRAPHENE_1_PERCENT);
uint16_t nv_level_reward_08 = (8*GRAPHENE_1_PERCENT);

The meaning of those variables only becomes clear when reviewing the business logic in

graphene::chain at a later point in time.

NOTE

In order to ensure that all parameters of new operations are properly reflected, it makes

sense to use the script programs/build_helpers/check_reflect.py, it will ensure all attributes

are properly reflected! In order for this script to work, the codebase needs to be compiled

(in particular, it requires cmake doxygen to be run).

Interestingly, some definitions of operation structures come with predefined values for

attributes, such as:

struct create_p2p_adv_operation : public base_operation
{

struct fee_parameters_type {

10

uint64_t fee = 5 * GRAPHENE_BLOCKCHAIN_PRECISION;
uint32_t price_per_kbyte = 1 *

GRAPHENE_BLOCKCHAIN_PRECISION;
};
asset fee;
account_id_type p2p_gateway;
bool adv_type = true;
string adv_description;
share_type max_cwd;
share_type min_cwd;
share_type price;
string currency;
uint32_t min_p2p_complete_deals = 0;
uint8_t min_account_status = 0;
uint32_t timelimit_for_reply = 3600;
uint32_t timelimit_for_approve = 3600;
string geo;
account_id_type fee_payer() const { return

p2p_gateway; }
void validate()const;
share_type calculate_fee(const fee_parameters_type& k)const;

};

It is worth noting that these values (e.g. true, 0, 3600) are not taken into consideration

anywhere. The reason is that the variables are not optional<T> and thus when using this

(and other operations), a value for those attributes must be provided by the user which

replaces the values here!

Virtual operations (such as aurorefund_p2p_order_operation and others) should

define the validate() method and throw an exception. Usually we have these in the

header files for virtual operations:

void validate()const { FC_ASSERT(!"virtual operation"); }

This ensures that virtual operations do not end up on the blockchain. Everything else equal,

this is the only technical difference to a regular operation!

We highly suspect that brackets are missing in

libraries/chain/protocol/exchange.cpp:

void payment_p2p_order_operation::validate()const
{
FC_ASSERT(fee.amount >= 0);
if (file_hash)

FC_ASSERT(fc::raw::pack_size(file_hash)>=10);

11

FC_ASSERT(fc::raw::pack_size(file_hash)<1000);
}

Business logic (graphene/chain)

The modifications that took place in libraries/chain/*.cpp files and thus implemented

the "business logic" of each new operation have been reviewed.

Configuration

In config.hpp you predefine an account and link it with id x.y.65735. This requires that

at least 65735+1 accounts exist on the blockchain at launch. Otherwise you risk someone

else registering this account by chance. Further, if your code makes use of this account by

get_account instead of find_account you risk exceptions that may cause the blockchain

to get stuck!

/// Represents Apostolos Account
#define GRAPHENE_APOSTOLOS_ACCOUNT
(graphene::chain::account_id_type(65735))

Furthermore, we still found these in the code: account_id_type(65735). Should be replaced

with the macro above.

You may further want to get rid of the STEALTH asset (which only exists on the original

BitShares blockchain).

#define GRAPHENE_FBA_STEALTH_DESIGNATED_ASSET (asset_id_type(743))

The maintenance interval has been reduced to every hour. Considering the amount of extra

efforts that need to take place in the maintenance interval, it becomes crucial to estimate

the time the maintenance block takes in order to not miss blocks.

#define GRAPHENE_DEFAULT_MAINTENANCE_INTERVAL (60*60) // seconds, aka:
1 hour

Use of enums

In libraries/chain/include/graphene/chain/gamezone_object.hpp (and others),

we ran into this:

uint8_t status = 0; //0 = new, 1 = sold out, 2 = completed, 3 = owner
paid, 4 = canceled

12

in the lottery_goods_object. We encourage you to use an enum instead (see for

example: vesting_balance_object.hpp).

Modifications to graphene:app (in libraries/app)

In graphene::app, the only changes were due to additional API calls within the

database_api. While we encourage building custom plugins for reach functional aspect of

a graphene blockchain (e.g. one for the lottery/coinflipping, one of p2p adv, and

another for the great race) adding APIs to the quite general database_api is just as fine if

the additional compile complexity is acceptable.

The list of new API calls in database_api:

vector<flipcoin_object> get_active_flipcoin() const;
vector<scoop_lots> lottery_goods_get_active() const;
vector<lottery_goods_object> lottery_goods_get_by_owner(const
std::string owner, uint8_t status) const;
vector<lottery_goods_object> lottery_goods_get_by_winner(const
std::string winner, uint8_t status) const;
vector<lottery_goods_object> lottery_goods_need_contacts(const
std::string winner) const;
vector<lottery_goods_object> lottery_goods_get_by_status_limit(uint16_t
limit, uint8_t status) const;
vector<matrix_object> get_active_matrix() const;
vector<matrix_rooms_object> get_rooms_by_player(const std::string
player) const;
vector<p2p_adv> get_p2p_adv(const std::string account_id_or_name, bool
adv_type) const;
vector<p2p_adv_object> get_my_p2p_adv(const std::string
account_id_or_name, uint8_t status) const;
vector<p2p_ord> get_p2p_orders(const std::string account_id_or_name)
const;
vector<p2p_ord> get_gateway_p2p_orders(const std::string
account_id_or_name, uint8_t status) const;
size_t get_gateway_total_orders(const std::string account_id_or_name)
const;
vector<credit_offer_object> credit_get_offers() const;
vector<credit_offer_object> credit_get_offers_by_account(const
std::string account_id_or_name) const;
vector<account_statistics_object> credit_get_debitors(const std::string
account_id_or_name) const;
vector<pledge_offer_object> pledge_get_offers() const;
vector<pledge_offer_object> pledge_get_offers_by_account(const
std::string account_id_or_name) const;

13

vector<gr_rating_obj> gr_get_rating(const std::string rating_type)
const;
vector<gr_invite_obj> gr_get_invites(const std::string
account_id_or_name) const;
vector<gr_range_bet_api_obj> gr_get_range_bets() const;
vector<gr_team_bet_api_obj> gr_get_team_bets() const;

We have not investigated the actual implementations of each API call but the first

impression was that they have mostly been implemented according to reasonable

standards.

Some API calls come with their own returning object structure.

Our only remark would be to limit the outcome of each API request by 100 items and

implement pagination where necessary.

The default value of enable_subscribe_to_all has been set to true which results in the

behavior that all objects that are queries by the user are also subscribed to. This not only

leads to an increased per-connection state on the server, but also comes with potentially

significant more traffic between the server and the subscribing user. Given that

subscriptions are client-side, please consider disabling this by default.

Modifications to the wallet in libraries/wallet

Only a few new calls have actually been implemented in the cli_wallet:

signed_transaction register_test_account(string name, string
referrer_account);
signed_transaction upgrade_status(string name, uint8_t status);
signed_transaction open_room(matrix_id_type matrix_id,

string player,
uint8_t matrix_level,
bool broadcast = false);

There seem to be implementations for a few other calls, but those were commented out.

Further, the review_period_seconds attribute for proposal_create_operation has

been modified on two occupations which would break in case you re-enable the evaluation

of said parameter on the blockchain.

Modifications to plugins in libraries/plugins

The only changes in the plugin relate to the replacing of BitShares into CrowdWiz. No

functional changes were made.

14

Modifications to the programs in programs/

For some reason, the witness_node and the delayed_node no longer accept plugins as

configuration parameters. No other functional changes have been made.

Additional unit tests in tests/

The entire tests/ folder from bitshares has been removed for unknown reasons. We

encourage you to implement unit tests for every single functionality of your blockchain to

prevent regressions on upgrades and misbehavior.

gr_interval

There is a global pseudo counter current_gr_interval that increments every

maintenance interval and restarts after 14. Depending on the interval, various aspects of

the blockchain take place.

Operations
For the ordering of operations into categories, we used the operations names and

comments as per operations.hpp. The categories seem to be independent of each other,

when discussing proof of stake.

Proof of Crowd Staking

finteh.org recommended

The "proof-of-crowd staking" consensus must be validated by tokenomics experts to

conform to the principles of game theory and economics.

Here we investigate the operations which are defined in poc_evaluator.cpp:

● poc_vote_operation: This operations takes 3 assets poc[3|6|12]_vote and

deduct them from the account balance. Asset must be CWD and the amount must be

>=0. It appears that the assets are moved to accumulated_fees and are thus a fee for

the user who gets his account updated for the corresponding amount in the

corresponding staking period.

15

● poc_stak_operation: This operation seems to allow to stake an amount that is

higher than a minimum that is derived from some committee parameters depending

on the duration (staking_type). The equations could be implemented slightly

easier to review but seem to be o.k. A percentage of the stak_amount in the

operation is moved into newly created vesting balances for the user that is vesting

for a certain amount in time (3, 6, 12 months).

■ In the case of 3 months, the first vesting balance contains the newly created

staking reward that is unlocked and can be claimed linearly over 3 months.

The second vesting balance contains the stak_amount that is deducted from

the account and is locked for the entire duration but vests fully right after it.

■ In the case of 6 months, there is only one vesting balance containing both,

the initial stak_amount plus reward and vests after 6 months.

■ In the case of 12 months, there is only one vesting balance containing both

amount and reward. The balance starts vesting immediately over a duration

of 12 months.

Afterwards, it appears that a 8 level deep referral program takes place where

each level gets a fraction of the stak_amount (newly issued token). The

fraction depends on the depth in the referral program, the

referral_status of the referrer as well as global staking parameters.

In the case the operation is called while gr_interval in [2,4,6,9,11,13],

an additional change in the gr_teams volumes takes place.

Further changes w.r.t. the credit system takes place and modifies the

allowed_to_repay attribute of the referrer as well as the monthly income

value in account statistics.

● poc_staking_referal_operation: This is a virtual operation that is created in

case the referrer account pays back some amounts in a credit.

16

finteh.org recommended

To effectively review these mechanics, formal specifications are required! A major concern

could be the nested modifications of database objects which take a considerable amount of

time. It might be necessary (depending on growth and usage) to optimize here in order not

to slow down block production unnecessarily.

Gamezone

In contrast to proof of crowd staking, gamezone comes with a gamezone objects file which

usually contains contract specific objects (think, accounts or assets). In this case there is a

gamezone_object.cpp (all implementation details are in the .hpp file). The operations are

managed in gamezone_evaluator.cpp as usual.

Gamezone comes with its own set of global parameters that define matrix_lasts_block,

matrix_idle_blocks as well as matrix_level_*_cells and matrix_level_*_price

for the matrix game. There is flipcoin_min_bet_amount for the flip coin game and

lottery_goods_total_participants, lottery_goods_expiration for lottery. All

variables are predefined with values we could validate.

Flipcoin

Flipcoin appears to be a game to deal with simply flipping a coin for heads or tails. There is a

flipcoin_object define that stores previous bets together with a status as well as an

index

The following operations have been implemented:

● flipcoin_bet_operation: This operation creates a new flipcoin_object

independent of whether there already is an object that it could match to. The

matching appears to take place elsewhere. Each bet comes with a user provided

nonce and a user-provided expiration time. Initial status is 0. This operation deducts

the betting amount from the user's balance.

● flipcoin_call_operation: The purpose of this operation is to match an existing

flipbet_object as created with the previous operation. Given that this is

17

user-controlled, the UX would be that users are provided with existing pending

games to pick one to complete with this operation. Apparently, a single bet can be

matched with one or more call operations.

● flipcoin_cancel_operation: This operation is not used anywhere, e.g. it is not

implemented. The existence of this operation indicates that a bet may be canceled

before being matched, however, it has no meaning right now.

● flipcoin_win_operation: Virtual operation pushed when processing the bets

● flipcoin_loose_operation: Virtual operation pushed when processing the bets

The bets themselves are resolved in db_update.cpp every block for all flipcoin objects with

expiration in the past. The random number generator that is used to throw heads or tails is

based on the head block id and takes the nonce-th position in the hexadecimal

representation of the block id (starting at position 8 and capped to 39 for unclear and

undocumented reasons).

Old flipcoin objects are removed from the database.

finteh.org recommended

A random number generator, implemented by the CWD.global team, must be reviewed very

carefully in order to avoid exploitation there.

Lottery

Lottery allows the creation of individual lottery games where people can buy tickets. An

object called lottery_goods_object stores the lotteries.

● lottery_goods_create_lot_operation: This operation is used to create a new

lottery. As arguments it accepts the owner, the number of participants (note: should

probably be called tickets instead), the price of a single ticket, an expiration time,

some latency that appears to extend the expiration time when the last ticket is

bought, and image url as well as a description. The corresponding object is created

with this operation. Apparently, a certain referral status is required in order to be

allowed to use this operation. The implementation mentions an admin account with

id 27 (should probably be a constant macro instead of a number right away).

18

● lottery_goods_buy_ticket_operation: This operation is used to buy a ticket

from a given lottery lot_id. The operation comes with an amount that must match

the lottery's price. Hence, only a single ticket can be bought at a time.

● lottery_goods_send_contacts_operation: After the lottery winner has been

picked, this operation can be used by the winner to put a winner_contacts

information into the lottery object.

● lottery_goods_confirm_delivery_operation: This operation can only be

called by the winner in order to claim the profit.

● lottery_goods_refund_operation: Virtual operation to indicate that a lottery

was not fully sold out, thus refunded

● lottery_goods_win_operation: Virtual operation pushed when processing the

bets

● lottery_goods_loose_operation: Virtual operation pushed when processing the

bets

Expired lotteries are processed every block in proceed_lottery_goods(). The random

number generator is different compared to flipcoin. In this case, the number of participants

to select a substring from the current head block. This substring is converted into a long

unsigned integer that is used to select a winner from the list of participants. The lottery

object is modified accordingly.

Old lotteries are removed from the database.

Matrix

Given that we have no specifications for this game, we are trying to identify its logic from

code. Some bullet points:

● There is a matrix_object that contains side information about an ongoing matrix

game including, start and finish block numbers, amounts and prices and prizes per

level.

● An 8 level game

● There can technically be multiple active and open matrix games. It is unclear

whether that actually happens.

19

● A player can open multiple rooms for a specific matrix as long as the user's

referral_status allows.

● For unclear reasons, each room appears to have its own level, called matrix_level.

● A room can technically hold many people/accounts.

● Each level comes with a fixed price defined when opening a new matrix (automated

and autonomous in proceed_matrix())

● Parameters, such as price levels and prizes are defined in a committee controlled

parameter called gamezone_parameters

● When a matrix is finished (e.g. finish block reached and some average value over

number of idle blocks is not reached - else finishing delayed by number of idle

blocks)

● It is unclear what values matrix_object.status can take and what they

represent. A room can have 3 states, open cells closed, open cells opened and

closed. Apparently, opening a room for a specific level may lead to another room

being filled if room status is open cells opened and the room is full (room

specific size of cells). The person that had opened the room would receive the

reward/prize (depends on matrix level)

● A referral program with 1 level takes place

● Some custom logic executes if the matrix is owned by the users referrer

● The first too rooms are treated differently (probably due to adjusted mechanics in

hardforks)

● matrix_open_room_operation: This opens a room within a matrix. To open a

room, a level-specific fee must be paid that goes into the matrix.

● matrix_room_closed_operation: Virtual operation

● matrix_cell_filled_operation: Virtual operation

finteh.org recommended

Some hard fork took place to fine-tune the mechanics. We would recommend defining

macros in the hardfork.h file and using those instead of putting (block) numbers into the

source code. This would make running an independent testnet easier.

20

Conclusion of the expert council

Some parts of the documentation should be clarified more.

The witnesses' vote number, for which the community has updated their witness nodes to

match the new source code, should be 2/3+1 of the total votes.

Decentralization is achieved thanks to the consensus mechanism that enables multiple

parties to append new blockchain onto the existing blockchain and thus update the state of

the database. The consensus scheme requires at least 11 of these block producers that take

turns. Thus, a single-point of failure is avoided and the consensus scheme becomes

decentralized.

“Cryptocurrency is a finite resource” - ETH, HIVE/STEEM, EOS and many more have no hard

cap.

“40% is distributed among Gold Crowd holders, 2% of undistributed profit from the affiliate

program is consumed to replenish the reserve fund” - community should know, block

producers and workers are paid from which fund.

“the implementation of NFT functionality is also possible” - it’s already possible. BitShares

implements NFTs using regular assets with max_supply: 1.

FinTechAssociation recommended for safety user’s funds

1. The Crowd Collateral algorithm needs a special audit for the.

2. The Crowd Credit needs careful consideration in order not to be exploited.

What if the user gets a loan and his referred users don't pay any transaction fees anymore?

Maybe they are Sybille's even.

3. The "proof-of-crowd staking" consensus must be validated by tokenomics experts to

conform to the principles of game theory and economics.

21

4. The random number generator has to be reviewed very thoroughly as CWD.global wants

to avoid this being exploited.

It's worth noting that the Peerplays project also has a random number generator and some

"games" implemented on chain - even though they never managed to get traction it's

potentially worth a review for CWD.global developers. Check this

https://github.com/peerplays-network/peerplays

“The winner is determined when generating the next block based on the hash of that block”

means that the block producer that gets to create the block can define the outcome of the

random number generator! CWD.global developers should review peerplays algorithms. It is

based on a commit+reveal scheme of all block producers.

And when the Helper bot is open source, the CWD.global community can offer other

interesting ideas for it!

CWD.global project looks like a very interesting fork of the

BitShares blockchain with several innovations in economy

mechanics.

Most of the business logic functions

declared in the documentation correspond

to the description.

The application from the repository was

built from the source code correctly

22

